SESQUITERPENE LACTONES FROM SCHKUHRIA ANTHEMOIDEA VAR. WISLIZENII

EDWIN STEWART and TOM J. MABRY

Department of Botany, The University of Texas at Austin, Austin, TX 78713, U.S.A.

(Revised received 22 April 1985)

Key Word Index-Schkuhria anthemoidea var. wislizenii; Asteraceae; Heliantheae; elemanolide; germacrolide.

Abstract—We report here on the isolation and characterization of two new elemanolides and the known germacrolide 11,13-dehydroeriolin from Schkuhria anthemoidea var. wislizenii.

INTRODUCTION

The taxonomically difficult genus Schkuhria Roth [1] has a diverse sesquiterpene lactone chemistry which includes germacrolides [2, 3], melampolides [4, 5], several heliangolides [3, 6-8] and an elemanolide [4]. As part of our continuing study of the sesquiterpene lactone chemistry of the Heliantheae, we report here two new elemanolides (1 and 2) and the known germacrolide 11,13-dehydroeriolin (3) from Schkuhria anthemoidea var. wislizenii (Gray) Heiser. The germacrolide 3 has also been reported from Schkuhria schkuhrioides [2, 4], S. pinnata [2] and Carpesium abrotanoides [9]. An earlier study of Schkuhria anthemoidea [3] heliangolides reported germacranolides.

RESULTS AND DISCUSSION

The elemanolide 1 had a molecular formula of $C_{15}H_{20}O_4$ (HRMS: 264.13615 calculated, 264.13580 measured). An IR absorption at 1762 cm⁻¹ suggested that an α,β -unsaturated γ -lactone moiety was present in the compound. Signals in the ¹H NMR spectrum for the exocyclic methylene protons (H-13a and H-13b) [10] were observed at $\delta 6.30 \ (J = 2.1 \text{ Hz})$ and 5.94 (J = 1.5 Hz); according to Samek [10-12] these are characteristic for cis fused α,β -unsaturated γ -lactones. Other elemanolides also follow Samek's empirically derived rule correlating the magnitude of the 7,13-coupling and the stereochemistry of lactone ring fusion [10-12]: for example, in epitulipdienolide, a trans fused elemanolide, $J_{7,13a} = 3.2$ Hz and $J_{7,13b} = 3.0$ Hz [13]; while in isoepitulipdienolide, a cis fused elemanolide, $J_{7.13a} = 1.4 \text{ Hz}$ and $J_{7.13b} = 1.4 \text{ Hz}$ [13]. Double irradiation experiments showed that the two protons H-13a and H-13b were coupled to a multiplet at δ 2.91 (H-7) which was coupled to a doublet of doublets at δ 3.80 (H-6) and to a doublet of doublets at δ 4.75 (H-8). The signal at δ 3.80 (H-6) was also coupled to a doublet at $\delta 2.23$ (H-5). The signal, at $\delta 4.75$ (H-8), was further coupled to doublets of doublets at $\delta 2.19$ (H-9a) and 1.86 (H-9b). The chemical shift of H-8 (δ 4.75), the IR absorption at 3594 cm⁻¹ and the fact that there were no signals for a side chain (NMR and MS) suggested that a hydroxyl was located at C-8. The geminal coupling between H-13a

and H-13b as well as the chemical shifts for these protons suggested that the 8-hydroxyl was in the α orientation [10]. Further decoupling experiments established that the doublet of doublets at δ 5.77 (H-1) was coupled to signals at δ 5.21 (H-2a) and δ 5.12 (H-2b). Doublets at δ 5.21 (H-3a) and δ 4.86 (H-3b) were allylically coupled to a vinyl methyl at δ 1.86. This coupling established the position of the second hydroxyl at C-14 rather than C-15 and thus distinguished 1 from the known 11(13)-dehydromeliten-

1 R = H

2 R = Ac

2732

Table 1. ¹H NMR spectra of 1 and 2 (270 MHz, CDCl₃, TMS as an int. standard)

Н	1	2
1	5.77 dd	5.78 dd
2a	5.21 d	5.19 d
2b	5.12 <i>d</i>	5.12 d
3a	5.21 s (br)	5.20 s (br)
3b	4.86 s (br)	4.85 s (br)
5	2.23 d	2.21 d
6	3.90 dd	3.90 dd
7	2.91 m	2.95 m
8	4.75 ddd	4.76 ddd
9a	2.19 dd	2.15 dd
9ь	1.86 dd	1.93 dd
13a	6.30 dd	6.32 dd
13b	5.94 dd	5.98 dd
14a	3.66 d	4.15 d
14b	3.55 d	3.95 d
15	1.86 s (br)	1.85 s (br)
OAc	_ `	2.03 s

J (Hz): 1, 2a = 10.5; 1, 2b = 14.7; 5, 6 = 11.6; 6, 7 = 9.45; 7, 8 = 6.3; 8, 9a = 6.3; 8, 9b = 5.2; 9a, 9b = 14.7; 7, 13a = 2.1; 7, 13b = 1.5; 14a, 14b = 10.0.

sin (4) [14]. Spectral comparisons of a second new compound 2 with 1 clearly established that 2 was the acetate of 1.

The known compound, 11,13-dehydroeriolin (3), also found in this *Schkuhria* species, was identified by comparison of spectral data with published values [2, 4, 9].

EXPERIMENTAL

Plant material. Leaves and flowers of S. anthemoidea var. wislizenii were collected by J. Gershenzon and J. Norris on November 25, 1981, at Jalisco, Mexico; 1.2 miles east off highway 44 south of Guadalajara on the road to Juanacatlan, west of Ejjdo de La Alameda. A voucher specimen (J.G. and J.N. #119) is on deposit in the Herbarium of the University of Texas at Austin.

Extraction and separation. Air-dried aerial parts (2.17 kg) were extracted with CH_2Cl_2 (42 l.) and worked-up in the usual manner [15]. The resulting extract (17.7 g) was charged on a silica gel column (450 g silica gel 60) which was eluted with a CH_2Cl_2 -iso-PrOH gradient beginning with 100% CH_2Cl_2 . Compound 1 was isolated from a fraction eluted from the column with CH_2Cl_2 -iso-PrOH (99:1). It was further purified by prep. TLC

(2 mm, silica gel; CH₂Cl₂-iso-PrOH, 15:1). Compounds 2 and 3 were obtained from another fraction eluted with CH₂Cl₂-iso-PrOH, 99:1). They were further purified by preparative TLC (2 mm, silica gel; petrol-EtOAc, 1:1).

Compound 1. IR $v_{\text{max}}^{\text{CHCl}}$, cm⁻¹: 3594, 3011, 2926, 1762, 1638, 1603, 1452, 1390, 1265, 1150, 1049, 1031, 980, 954, 909, MS m/z: 264, 246, 228, 216, 201, 183, 171, 159, 145, 133, 121, 105, 95, 91, 83, 69, 55, 43; ¹³C NMR: δ 170.1 s, 143.2 s + t, 138.3 s, 124.1 t, 115.2 t, 114.4 t, 75.0 d, 69.9 d, 64.9 t, 56.3 d, 46.4 d, 44.2 t, 32.6 t, 29.7 q, 26.0 a.

Compound 2: IR $v_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 3575, 3493, 3026, 2968, 2919, 1763, 1738, 1640, 1445, 1377, 1264, 1239, 1148, 1124, 1107, 1048, 1018, 957, 914; MS m/z: (no M + obs), 264, 246, 228, 216, 201, 200, 183, 171, 162, 159, 157, 145, 121, 107, 105, 95, 91, 83, 81, 69, 55, 43; 13 C NMR: δ 170.8 s, 170.6 s, 142.3 s + t, 138.0 s, 124.3 t, 115.3 t, 114.2 t, 75.1 d, 70.0 d, 66.6 t, 56.0 t, 46.2 d, 41.8 t, 33.1 t, 29.7, 26.1 q, 20.8 q.

Acknowledgements—We thank Dr. B. A. Shoulders for high field ¹H and ¹³C NMR measurements, M. Leidig for MS measurements, the National Institute of Health (Grant GM-35710), the Robert A. Welch Foundation (Grant F-130) and D. Gage, J. Gershenzon, J. Pearce and A. Whittemore for useful discussions. E.S. was supported by an NSF Pre-doctoral Fellowship.

REFERENCES

- 1. Heiser, C. B. (1945) Ann. Missouri Bot. Gard. 32, 265.
- Romo de Vivar, A., Perez, C., A. L., Leon, N. C. and Delgado, G. (1982) Phytochemistry 21, 2905.
- Perez, A. L., Mendoza, J. S. and Romo de Vivar, A. (1984) Phytochemistry 23, 2911.
- Delgado, G., Hernandez, H. and Romo de Vivar, A. (1984) J. Org. Chem. 49, 2994.
- Samek, Z., Holub, M., Bloszyk, E. and Drozdz, B. (1979) Z. Chem. 19, 449.
- 6. Bohlmann, F. and Zdero, C. (1981) Phytochemistry 20, 2431.
- 7. Pettei, M. J., Miura, I., Kubo, I. and Nakanishi, K. (1978) Heterocycles 11, 471.
- 8. Herz, W. and Govindan, S. (1979) Phytochemistry 19, 1234.
- Maruyama, M., Karube, A. and Sato, K. (1983) Phytochemistry 22, 2773.
- Fischer, N. H., Olivier, E. J. and Fischer, H. D. (1979) Progress in the Chemistry of Organic Natural Products. Springer, New York.
- 11. Samek, Z. (1970) Tetrahedron Letters 671.
- Samek, Z. and Harmatha, J. (1978) Coll. Czech. Chem. Commun. 43, 2779.
- Doskotch, R., Keely, S., Hufford, C. and El-Feraly, F. (1974) Phytochemistry 14, 769.
- Gonzalez Gonzalez, A., Barrera, J. B., Cabera, I. and MassAnet, G. M. (1974) An. Quim. 70, 74.
- Mabry, T. J., Miller, H. E., Kagan, H. B. and Renold, W. (1966) Tetrahedron 22, 1139.